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◼ How do thermodynamics and kinetics contribute to solar 
thermochemical performance, or efficiency?

◼ What are the key challenges related to measuring 
thermodynamic and kinetic properties of thermochemical 
materials? 

◼ What are overlooked chemistry-based technical 
metrics/objectives that should be considered at both early and 
late stages?

Questions that will be Addressed
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◼ This will tell you if it is worth 
investigating materials to begin with

◼ Properties can be measured a variety 
if ways if data not available

◼ Variations in the oxidation pO2 can 
result in substantial differences in fuel 
production and affect efficiency

Thermodynamic Analysis is First
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Reproduced from: Panlener, 
R. J., R. N. Blumenthal, and J. 
E. Garnier. "A thermodynamic 
study of nonstoichiometric 
cerium dioxide." Journal of 
Physics and Chemistry of 
Solids 36.11 (1975): 1213-
1222.
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Data Digitized From: Panlener, R.; Blumenthal, R.; Garnier, J. Journal of Physics 
and Chemistry of Solids 1975, 36, (11), 1213-1222.



Department of Mechanical and Aerospace Engineering

◼ This will tell you if it is worth 
investigating materials to begin with

◼ Properties can be measured a variety 
if ways if data not available

◼ Variations in the oxidation pO2 can 
result in substantial differences in fuel 
production and affect efficiency

Thermodynamic Analysis is First

6

Data Digitized From: Panlener, R.; Blumenthal, R.; Garnier, J. Journal of Physics 
and Chemistry of Solids 1975, 36, (11), 1213-1222.

𝑝H2O

𝑝H2
= 1

𝑝H2O

𝑝H2
= 10

( )
2

2 2
w

2

O H O

H

p p
K T

p p

 
=  
 

2 2 2H O H 0.5O+



Department of Mechanical and Aerospace Engineering

◼ This will tell you if it is worth 
investigating materials to begin with

◼ Properties can be measured a variety 
if ways if data not available

◼ Variations in the oxidation pO2 can 
result in substantial differences in fuel 
production and affect efficiency

Thermodynamic Analysis is First

7

Data Digitized From: Panlener, R.; Blumenthal, R.; Garnier, J. Journal of Physics 
and Chemistry of Solids 1975, 36, (11), 1213-1222.
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◼ ΔTcycle and Tred are driven by Δs and 
Δh of redox material

◼ Current SOA material, CeO2-δ, is 
shown to the right is used to 
demonstrate

↑ Δs, ↓ Δh Most Favorable
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◼ ΔTcycle and Tred are driven by Δs and 
Δh of redox material

◼ Current SOA material, CeO2-δ, is 
shown to the right is used to 
demonstrate

◼ Decreasing Δh and increasing Δs 
result in lower Tred and ΔTcycle – see 
dashed lines

↑ Δs, ↓ Δh Most Favorable
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◼ It is always important to know your 
pO2 and T, but usually pO2 is not

◼ Can be controlled by varying 
H2O/H2 in system and measuring 
changes in concentrations due to 
reduction and oxidation

◼ Usually not controlled during 
oxidation

◼ Efficiency cannot be predicted 
without measurements under 
controlled pO2

Measuring Kinetics and Thermodynamics
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◼ Kinetics that are modeled should be 
calculated from reaction rates that are 
free from:

◼ Mass transfer limitations

◼ Heat transfer limitations

◼ Dispersion and detector lag

◼ Large particle size distributions – as 
much as possible

◼ Morphological changes

◼ Impacted by reverse reaction (K>>1)
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Controlled H2O/H2 HTWSR
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T 293-1873 K

p tot 0.2 mbar-1.01325 bar

p O2 f (T , p H2, p H2O)
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Exemplary Experimental Results
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CeO2-δf + H2O ↔ CeO2-δi + H2

Carrillo, Richard J., Kent J. Warren, 
and Jonathan R. Scheffe. Journal 
of Solar Energy Engineering 141.2 
(2019).
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◼ Measurements were compared 
to Panlener et al. [1] and Tuller 
and Nowick [2]

Measured δ Validate 

the Approach
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T 1173-1473 K

p tot 1 atm

p O2 4.54×10
-18

-1.02×10
-9

 atm

Carrillo, Richard J., Kent J. Warren, and Jonathan R. Scheffe. Journal of 
Solar Energy Engineering 141.2 (2019).
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Correction for gas dispersion

A Good Model Can Serve as a Guide
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Extrapolation to 
different conditions

Here, initial reduction 
extent is greaterCarrillo, Richard J., Kent J. Warren, and Jonathan R. Scheffe. Journal of 

Solar Energy Engineering 141.2 (2019).
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◼ Marxer et al. has demonstrated highest 
efficiency to date of 5.3 % using ceria

◼ 63% of losses due to heating

◼ Entropy change is dominating factor for 
temperature swing cycles

◼ Large pores enhance radiative heat transfer. 
Usually this is rate limiting during 
reduction. 

◼ Kinetics usually rate limiting during 
oxidation with H2O or CO2.

◼ Stability should be demonstrated at this 
scale because of the extreme thermal 
gradients.

Exemplary Batch Type Reactor
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Marxer, Daniel, et al. "Solar thermochemical splitting of CO 2 into separate streams of CO and O 2 
with high selectivity, stability, conversion, and efficiency." Energy & Environmental Science 10.5 
(2017): 1142-1149.
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